
CS 5594: BLOCKCHAIN
TECHNOLOGIES

THANG HOANG, PhD

Spring 2024

BITCOIN

Bitcoin Overview

Recap: Bitcoin is not equivalent to blockchain

Bitcoin is the foundation of all BC technologies today

Understanding Bitcoin will mostly understand how BC technologies are built

Bitcoin Components

P2P Network

Address and Wallet

Transactions

Blocks

Consensus

Mining

Bitcoin Components

Bitcoin Network

Bitcoin Network
Ad-hoc network (TCP port 8333) with random topology

All nodes are equal – no special/master nodes

Nodes can join and leave at any time (permissionless/public blockchain)

Forget non-responding nodes after 3 hours

1

5

6

3

7

2

4

Bitcoin Network
Ad-hoc network (TCP port 8333) with random topology

All nodes are equal – no special/master nodes

Nodes can join and leave at any time (permissionless/public blockchain)

Forget non-responding nodes after 3 hours

1

5

6

3

7

2

4

8

Hi! I am new to
BTC!

Bitcoin Network
Ad-hoc network (TCP port 8333) with random topology

All nodes are equal – no special/master nodes

Nodes can join and leave at any time (permissionless/public blockchain)

Forget non-responding nodes after 3 hours

1

5

6

3

7

2

4

8

Hi! I am new to
BTC!

ge
tA

ddr()

Seed node

ad
dr

(1
,3)

Bitcoin Network
Ad-hoc network (TCP port 8333) with random topology

All nodes are equal – no special/master nodes

Nodes can join and leave at any time (permissionless/ public blockchain)

Forget non-responding nodes after 3 hours

1

5

6

3

7

2

4

8

Hi! I am new to
BTC!

ge
tA

ddr()

Seed node

ad
dr

(1
,3)

Transaction Propagation

Nodes listen and relay new transactions to other nodes via flooding (gossip)
protocol

1

5

6

3

7

2

4

8

New Tx!
A → B

Transaction Propagation

Nodes listen and relay new transactions to other nodes via flooding (gossip)
protocol

1

5

6

3

7

2

4

8

A → B

A → B

A → BA → B
A → B

Transaction Propagation

Nodes listen and relay new transactions to other nodes via flooding (gossip)
protocol

1

5

6

3

7

2

4

8

A → B

A → B

A → B
A → B

A → B

A → B

A → B
A → B

Transaction Propagation
Node relays a transaction when

Transaction is valid with current blockchain (e.g., coin not redeemed elsewhere)
Have not seen the transaction before

Avoid infinite loops

Does not conflict with other transactions it has relayed
Avoid double-spend attacks

1

5

6

3

7

2

4

8

A → B

A → B

A → B
A → B

A → B

A → B

A → B
A → B

Already
heard that!

Transaction Propagation

Four conditions for a node to relay a transaction:

1. Valid transaction with current blockchain (e.g., coin not redeemed
elsewhere)

2. Outputs redeemed were not spent elsewhere
Avoid double-spend attacks (to be explained later)

3. Have not seen the transaction before
Avoid infinite loops

4. (default) Script matches a whitelist
Avoid unusual script

Sanity checks only!
Some (malicious) nodes may not

follow these rules

Transaction Propagation
Race condition may arise since nodes may have different transaction pool

Transactions may get conflict

Default behavior: retain whatever the node hear first

Network position matters

Implement some logics to handle race condition

1

5

6

3

7

2

4

8

A → B

A → B

A → B
A → B

A → B

A → C A → B

A → B

A → CA → C

A → C

A → C

Block Propagation
Almost identical with transaction propagation

Node relays a new block when
Block meets the hash target
Block has all valid transactions

Run all scripts, even if you would not relay
Block builds on current longest chain

Avoid forks
Sanity check only, may be ignored by malicious node

How does a bitcoin transaction/block look like?

that both of these modifications lead to an increased number of forks in the block
tree, which in turn leads to a reduction of the security threshold of the system.
In other words, attackers can perform effective attacks with less computational
power once the throughput is increased. The qualitative tradeoffs between these
parameters are depicted in Fig. 2.

Block size (KB)
0 50 100 150 200 250 300 350

Ti
m

e
(s

ec
)

0

10

20

30

40

50

25%

50%

75%

Fig. 1. The relation between the block
size and the time it took to reach 25%
(red), 50% (green), and 75% (blue) of
monitored nodes, based on data pro-
vided by Decker and Wattenhofer [7].

⇨

⇨ ⇨

Throughput
(TPS)

Block rate
()

Block size
(b)

Forks in
block tree

Security
(/)

⇨⇨

Fig. 2. A general view of tradeoffs in
the Bitcoin protocol. Increasing the
block size or the block rate causes an
increase in the TPS, but also decreases
the security from double-spend attacks.

Larger Blocks. Indeed, while a node has not yet learned of the latest addition
to the main chain, any block that it creates will not add to that chain, but
rather contribute to a less updated alternative branch. Thus as the block size is
increased, blocks naturally take longer to propagate through the network, hence
more forks occur. This observation is well supported by a measurement study
conducted by Decker and Wattenhofer [7] who have measured block propagation
delays in the Bitcoin network. Figure 1, which is based on raw data that they
have generously shared with us, depicts a clear linear relation between the block
size and its propagation time.

Accelerated Block Creation. Similarly, if block creation is accelerated, more
blocks are being created by the honest network (larger λh) while the most recent
block in the main chain is propagated. Again, these blocks will often be created
by nodes that are not fully up to date and will not extend the longest chain.
The attacker on the other hand, also creates blocks faster (at a rate of q · λh),
but does not suffer from a loss of efficiency.

Reduced Security. In both cases described above, blocks that are created do
not always contribute to the lengthening of the main chain, which makes it easier
for an attacker to replace it.

Block propagation time to reach
25%, 50%, 75 % nodes

Source: Yonatan Sompolinsky and Aviv Zohar: “Accelerating Bitcoin’s
Transaction Processing”, 2014

Bitcoin Network Stats
Exponential growth

Hard to measure precisely due to dynamism
Nodes join and leave frequently

Bitcoin Network Stats

Two common types of nodes in bitcoin network
Full nodes (~10K, maybe dropping!)

Permanently connected
Store entire block chain (~316 GB as of 2020)
Listen every transaction and forward to every node

Thin/SPV nodes
Do not store everything → save storage cost
Only store block headers (~100 MB)
Request transactions as needed
Trust full nodes

Bitcoin Network Stats
90% nodes run Core Bitcoin (C++)

Some use out-of-date version

Other implementations adapted and integrated to Bitcoin network successfully
BitcoinJ (Java)
Libbitcoin (C++)
Btcd (Go)

Original Satoshi client

Bitcoin Components

Bitcoin Address

Bitcoin Address
To make a transaction, nodes need to get some information:

Their secret signing key
Recipient’s address
Some info from the public blockchain

Pseudonymity is the main goal of bitcoin
Recap: public-key cryptography

(private key, public key)

Key management

signing key public address

Bitcoin Public Address
Hash of public key

Why hash?

Encode as text string: base-58 notation
Why 58?

1234567890ABCDEFGHJKLMNOPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz

or use QR code

Bitcoin Address
Sender and recipient “addresses” are indicated in scripts (will be discussed
later)

OP_DUP
OP_HASH160
69e02e18...
OP_EQUALVERIFY OP_CHECKSIG

30440220...
0467d2c9...

scriptSig

scriptPubKey

TO VERIFY: Concatenated script must execute completely with no errors

Bitcoin Wallet
Manage your private keys

Three main goals:
Availability: You can spend your coins
Security: Nobody else can spend your coins
Convenience: easy to manage

Easiest (and convenient) way:
Store key in a file on your computer or phone
As available as your device

Device lost/wiped ⇒ key lost ⇒ coins lost
As secure as your device

Device compromised ⇒ key leaked ⇒ coins stolen

Wallet Software

Keep track of your coins
Manage your keys
Nice user interface

Nice trick: use a separate address/key for each coin
Benefits privacy (looks like separate owners)
Wallet can do the bookkeeping, user needn’t know

Online Wallet
Like a local wallet but in the cloud

Runs in your browser
Site sends code and stores keys
Log in to access wallet

Pros:
Convenient, nothing to install
Availability, works on multiple devices

Cons:
Security vulnerability
Malicious site

Should be maintained by security professionals

Hot vs. Cold Storage

Hot storage Cold storage

online
offline

convenient but risky
archival but safer

separate
keys

Hot vs. Cold Storage

hot secret key(s) cold secret key(s)

cold address(es) hot address(es)

payments

Hot storage Cold storage

Hot vs. Cold Storage

Hot storage Cold storage

online

hot secret key(s)

cold address(es)

payments
offline!!

New (address-key) pair per coin sent to cold
What if cold wallet goes dark?

Generate many addresses/keys beforehand
Periodical connection w/ online wallet

Hierarchical wallet

Regular Key Generation

KeyGen

address

private key

Hierarchical Key Generation

generateKeysHier

address
gen info

private key
gen info

genAddr

genKey

i

ith

address

ith
key

i

doesn’t leak keys

Allow cold side to generate unlimited number of addresses

Hot side can know all these address with only one-time communication

Example
Private key gen info: 𝑘, 𝑥, 𝑦
• i-th private key: 𝑥! 	= 	𝑦	 + 	𝐻(𝑘	||	𝑖)
Address gen info: 𝑘, 𝑔"
• i-th public key 𝑔#! 	= 	𝑔" ⋅ 𝑔$(&| !
• i-th address: 𝐻(𝑔#!)

Regular Key Generation

generateKeysHier

address
gen info

private key
gen info

genAddr

genKey

i

ith
address

ith

key

i

hot side

cold side
Example
Private key gen info: 𝑘, 𝑥, 𝑦
• i-th private key: 𝑥! 	= 	𝑦	 + 	𝐻(𝑘	||	𝑖)
Address gen info: 𝑘, 𝑔"
• i-th public key 𝑔#! 	= 	𝑔" ⋅ 𝑔$(&| !
• i-th address: 𝐻(𝑔#!)

Other Cold Info Storage Mechanism
Stored in a device locked in a safe

“Brain” wallet
Encrypt info with passphrase that we remember

Paper wallet
Print info on paper
Lock up the paper

Tamper-resistant device
Device will sign things with keys inside, but won’t divulge keys

Combination of multiple methods above

Splitting and Sharing Keys

split:
 X1 = (S+R) mod P X2 = (S+2R) mod P

reconstruct:
 (2X1-X2) mod P = S

Split and store key in multiple locations
Distributed Key Storage

Crypto Tools: Secret Sharing
Split secret into N pieces, such that

Given any K pieces, can reconstruct the secret
Less than K pieces, don’t learn anything

Example: N=2, K=2 P = a large prime
S = secret in [0, P)
R = random in [0, P)

Splitting and Sharing Keys

x

y

(0, S)

random slope R

(1, S+R)

(2, S+2R) (3, S+3R)

(4, S+4R)

(do arithmetic modulo large prime P)

given any two points,
can interpolate and find S

Splitting and Sharing Keys
Pros:

Improved resiliency (distributed key storage)
Adversary must compromise several shares to get the key

Cons:
To sign, need to bring some shares altogether
Reconstruct the key before signing ⇐ vulnerable

Threshold signature
Sign (in distributed manner) without reconstructing the key
Complex math behind (won’t discuss here)

Multi-signature
Address directly split among multiple independent keys
Key stored in different locations, signatures produced separately
k-out-of-n valid signature to create valid transaction

Bitcoin Components

Bitcoin Transaction

Bitcoin Transactions

Nodes now have all necessary information to make a transaction

How does a bitcoin transaction look like?

Bitcoin Transaction
Fundamental building block in bitcoin network

(Create 25 coins and credit to Alice)ASSERTED BY MINERS

(Transfer 17 coins from Alice to Bob)SIGNED BY ALICE

(Transfer 8 coins from Bob to Carol)SIGNED BY BOB

(Transfer 8 coins from Carol to Alice)SIGNED BY CAROL

(Transfer 15 coins from Alice to Dave)SIGNED BY ALICE

is this valid?

Scan backward until genesis to
validate transaction

Account-based ledger

Bitcoin Transaction
Transaction-based ledger

Inputs: ∅
Outputs: 25.0 ➝ Alice

1

Inputs: 1[0]
Outputs: 17.0 ➝ Bob, 8.0 ➝ Alice

2

SIGNED BY ALICE

Change
address

Inputs: 2[0]
Outputs: 8.0 ➝ Carol, 9.0 ➝ Bob

3

SIGNED BY BOB

Inputs: 2[1]
Outputs: 6.0 ➝ Dave, 2.0 ➝ Alice

4

SIGNED BY ALICE Check total input = total output

hash pointer

Efficient verification:
No need to go all to the
beginning of the chain

Bitcoin Transaction
Transaction-based ledger
Joint payment

Inputs: …
Outputs: 17.0 ➝ Bob, 8.0 ➝ Alice

1

Inputs: 1[1]
Outputs: 6.0 ➝ Carol, 2.0 ➝ Bob

2
SIGNED BY CAROL

Inputs: 2[0], 2[1]
Outputs: 8.0 ➝ David

3

SIGNED BY BOB and CAROL

SIGNED BY ALICE

Two signatures!

Bitcoin Transaction
Transaction-based ledger
Consolidate fund

Inputs: …
Outputs: 17.0 ➝ Bob, 8.0 ➝ Alice

1

Inputs: 1[1]
Outputs: 6.0 ➝ Carol, 2.0 ➝ Bob

2
SIGNED BY CAROL

Inputs: 1[0], 2[1]
Outputs: 19.0 ➝ Bob

3

SIGNED BY BOB

SIGNED BY ALICE

Bitcoin Transaction Structure

Field Description

Hash Hash of the entire transaction (unique ID for pointer)

VER Version being used (for some rules to be applied)

IN_SZ Number of inputs

OUT_SZ Number of outputs

LCKTIME Unix timestamp or block number

SZ Total size of transaction (in bytes)

IN List of transaction inputs

OUT List of transaction outputs

Hash VER IN_SZ OUT_SZ LCKTIME SZ IN OUT

Metadata Input Output

Bitcoin Transaction Script
{
“hash”: “5a2590fbe0a90ee8e…”
”ver”: 1,
“in_sz”: 1,
“out_sz”:1,
“lcktime”:0,
“sz”:404,
“in”:[
 {
 “prev_out”:{
 “hash”: “3be4ac9728a0823…”
 “n”:0
 },
 “scriptSig”:”30440…”
 }
],
“out”:[
 {
 “value”: “10.122877097”
 “scriptPubKey”:”OP_DUP OP_HASH160 69a02e18b… OP_EQUALVERIFY OP_CHECKSIG”
 }
}

transaction hash

size

previous transaction

Signature

version
of inputs
of outputs
lock time (TBD)

index

value

recipient address?

Bitcoin Script
A language that contain instructions to be executed

Concatenated script must be executed completely without errors

Design Goals for Script
Built for Bitcoin
Simple, compact
Support cryptography
Stack-based language
Limits on time/memory
No looping

Bitcoin Script Instructions
256 opcodes total (15 disabled, 75 reserved)

Arithmetic
If/then
Logic/data handling

Crypto!
Hashes
Signature verification
Multi-signature verification

OP_CHECKMULTISIG
• Built-in support for joint signatures
• Specify n public keys
• Specify t (threshold)
• Verification requires t signatures

BUG ALERT: Extra data value popped from
the stack and ignored

Bitcoin Script Execution

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_CHECKSIG

<sig>

Stack

Bitcoin Script Execution

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_CHECKSIG

<sig>

<pubKey>

Stack

Bitcoin Script Execution

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_CHECKSIG

<sig>

<pubKey>

<pubKey>

Stack

Bitcoin Script Execution

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_CHECKSIG

<sig>

<pubKey>

<pubKeyHash>

Stack

Bitcoin Script Execution

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_CHECKSIG

<sig>

<pubKey>

<pubKeyHash>

<pubKeyHash?>

Stack

Bitcoin Script Execution

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_CHECKSIG

<sig>

<pubKey>

Stack

Bitcoin Script Execution

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_CHECKSIG

<sig>

<pubKey>

Stack

Bitcoin Script Execution
§ If no error, transaction is validated

<sig> <pubKey> OP_DUP OP_HASH160 <pubKeyHash?> OP_EQUALVERIFY OP_CHECKSIG ✓

Bitcoin Scripts in Practice
Most nodes whitelist known scripts
99.9% are simple signature checks
~0.01% are MULTISIG
~0.01% are Pay-to-Script-Hash (newly added to original BTC)
Remainders are errors
Proof-of-burn script

Cannot be redeemed
Destroy coin

OP_RETURN
<arbitrary data>

nothing’s going to redeem that ☹

Pay-to-Script-Hash

Big BoxI’m ready to pay for my purchases!

Cool! Well we’re using MULTISIG now, so
include a script requiring 2 of our 3
account managers to approve. Don’t get
any of those details wrong. Thanks for
shopping at Big Box!

?

Should senders specify scripts?
Complicate things to sender

Pay-to-Script-Hash
§ Idea: use the hash of script

OP_HASH160
<hash of redemption script>
OP_EQUAL

<signature>
<<pubkey> OP_CHECKSIG>

“Pay to Script Hash”

<signature>

<pubkey>
OP_CHECKSIG

Pay-to-Script-Hash

Idea: use the hash of script

Big BoxI’m ready to pay for my purchases!

Great! Here’s our address: 0x3454

Bitcoin Scripts Applications

Escrow Transactions
Third party to approve/dispute transactions

PROBLEM: Alice wants to buy online from Bob.
Alice doesn’t want to pay until after Bob ships.
Bob doesn’t want to ship until after Alice pays.

Pay x to 2-of-3 of Alice, Bob, Judy (MULTISIG)
SIGNED(ALICE)

BobAlice

To: Alice
From: Bob

Pay x to Bob
SIGNED(ALICE, BOB)

(normal case)
Pay x to Alice

SIGNED(ALICE, JUDY)

(disputed case)

Judy

Bitcoin Scripts Applications

Green Addresses

Alice BobPROBLEM: Alice wants to pay Bob.
Bob can’t wait 6 verifications to guard against double-

spends, or is offline completely.

Pay x to Bob, y to Bank
SIGNED(BANK)

Faraday cage
It’s me, Alice! Could you make out a

green payment to Bob?
Bank

No double spend

004 days since last double spend!

Bitcoin Scripts Applications

Micropayments

Alice
Bob

PROBLEM: Alice wants to pay Bob for each
minute of phone service. She doesn’t want to

incur a transaction fee every minute.

Input: x; Pay 01 to Bob, 99 to Alice
SIGNED(ALICE)___________

Input: x; Pay 02 to Bob, 98 to Alice
SIGNED(ALICE)___________

Input: x; Pay 03 to Bob, 97 to Alice
SIGNED(ALICE)___________

Input: x; Pay 04 to Bob, 96 to Alice
SIGNED(ALICE)___________

Input: x; Pay 42 to Bob, 58 to Alice
SIGNED(ALICE)___________

...

I’m done!

I’ll publish!

all of these could be
double-spends!

Input: y; Pay 100 to Bob/Alice (MULTISIG)
SIGNED(ALICE)

Input: x; Pay 42 to Bob, 58 to Alice
SIGNED(ALICE) SIGNED(BOB)

Input: x; Pay 100 to Alice, LOCK until time t
SIGNED(ALICE) SIGNED(BOB)

Alice demands a timed refund transaction before starting

What if Bob never signs the last transaction?
§ Alice coins sit in escrow forever

Bitcoin Scripts Applications

lock_time
Lock transactions until some time in the future
If Bob does not sign the last transaction, Alice can get refund

{
 "hash":"5a42590...b8b6b",
 "ver":1,
 "vin_sz":2,
 "vout_sz":1,
 "lock_time":315415,
 "size":404,

...
}

More Advanced Bitcoin Scripts

Multiplayer lotteries
Hash pre-image challenges
Coin-swapping protocols

“Smart contracts”

(to be discussed in next lectures)

Bitcoin Block
Contain multiple transactions

Why bundle transactions together?
Single unit of work for miners
Limit length of hash-chain of blocks

Faster to verify history

Bitcoin Block Structure

trans: H()

prev: H()

trans: H()

prev: H()

trans: H()

prev: H()

H() H()

H() H() H() H()

transaction transaction transaction transaction

Hash chain of blocks

Hash tree (Merkle tree) of
transactions in each block

Bitcoin Block Structure in Script

{
 "hash":"00000000000000001aad2...",
 "ver":2,
 "prev_block":"00000000000000003043...",
 "time":1391279636,
 "bits":419558700,
 "nonce":459459841,
 "mrkl_root":"89776...",
 "n_tx":354,
 "size":181520,
 "tx":[
 ...
],
 "mrkl_tree":[
 "6bd5eb25...",
 ...
 "89776cdb..."
]
}

transaction
data

block
header

Coinbase Transaction
Bitcoin block has a special transaction called “coinbase” transaction

To create new coin for mining/incentivizing
Does not redeem previous output (null hash pointer)

"in":[
 {
 "prev_out":{
 "hash":"000000.....0000000",
 "n":4294967295
 },
"coinbase":{"..."
 },
"out":[
 {
 "value":"25.03371419",
 "scriptPubKey":"OPDUP OPHASH160 ... ”
 }

Arbitrary

Null hash pointer

First ever coinbase parameter:
“The Times 03/Jan/2009 Chancellor
on brink of second bailout for banks”

Redeeming nothing

block reward transaction fee

Bitcoin Block

Explore yourself!
Blockchain.com
Google…

Bitcoin Components

Consensus Mechanism

Bitcoin Transaction Validation

Once new transactions are broadcast in the network

Some nodes collect them to form a block
A random node is selected to propose the next block to the chain

How to select the node in network?

Other nodes accept the block only if all transactions in it are valid
Unspent / no double spent
Valid signatures

Nodes express their acceptance of the block by including its hash in the next
block they create

Bitcoin Block Validation

Once the block is formed,
It must be verified before included in the chain
A block contains multiple transactions
All transactions in the block must be verified

Malicious Node
What if a malicious node is selected to propose new block

Adversary may try to
Steal bitcoin from other nodes?

Need to forge signature (break cryptographic primitives)
Execute Denial-of-Service (DoS) attacks?

Ignore transactions from specific address
Attempt double-spending attacks?

CA → B

CA → A’

Pay to pkB : H()
signed by A

Pay to pkA’ : H()
signed by A

Double-
spending
attack

Blockchain Consensus
Prevent double-spending attack

How many confirmation? 0? 1? 2?
The more confirmations transaction gets,
the higher probability end up in longest term chain

CA → B

CA → A’

Hear about CA → B transaction
0 confirmations

1 confirmation

double-spend
attempt

3 confirmations

Double-spend probability
decreases exponentially with
of confirmations

Most common heuristic:
6 confirmations

Blockchain Consensus

Protection against invalid transactions (malicious nodes) is cryptographic, but enforced by
consensus

Majority is honest

Protection against double-spending is purely by consensus

Never 100% sure a transaction is in consensus branch. Guarantee is only probabilistic

CA → B

CA → A’

Incentive Mechanism
Assumption of honesty is problematic

What is the benefit of behaving honestly?

Solution: Give incentives to nodes for behaving honestly

Currency has real value to harden robustness of (traditional) consensus protocol

Can we penalize the node
that created this block?

Can we reward nodes
that created these blocks?

Incentive Mechanism
Incentive method 1: Block reward

Node that creates new block gets to
Include special coin-creation transaction in the block
Choose recipient address of this transaction
Collect the reward if its block ends up on long-term consensus branch

Value is fixed: currently 12.5 BTC, halves every 4 years
Finite source of coin supply

Runs out in 2040. No new coins unless rules change

Year

To
ta

l b
itc

oi
ns

 in
 c

irc
ul

at
io

n

First inflection point:
reward halved from
50BTC to 25BTC

Incentive Mechanism
Incentive #2: Transaction fees

Creator of transaction can choose to make output value less than input value
Remainder is a transaction fee and goes to block creator
Purely voluntary (like a tip)
Will be more important when new coins run out in 2040

Incentive Mechanism
Incentive given to encourage honest behavior

Yet, there are still remaining problems
How to select a random node?
How to avoid a free-for-all due to rewards?

Everyone wants to capture reward
How to prevent Sybil attacks?

What if adversary control 51% # of verifying nodes?

Bitcoin Components

Mining

Mining Mechanisms
To approximate selecting a random node:

Select nodes in proportion to a resource that no one can monopolize hopefully)

Proof-of-Work: In proportion to computing power
Nodes compete with each other to propose the new block
Make it hard to create new identities (prevent Sybil attacks)

Proof-of-Stake: in proportion to ownership
Not used in bitcoin
Will be discussed later

Proof of Work
Goal: Solve a hash puzzle

To create a new block, find a nonce such that

H(nonce ‖ prev_hash ‖ tx ‖ … ‖ tx) is very small

nonce
prev_h

Tx
Tx

Output space of H

Target
space

If H is secure:
only way to succeed is to try enough nonces until we get lucky

Mining Mechanism: Proof-of-Work
Three desirable properties of PoW:

Difficult to compute
~1020 hashes/block as of Aug 2014:
Only some nodes bother to compete — miners

Parameterizable cost (Why?)
Automatically re-calculate the target every two weeks
Goal: keep average time between blocks ~ 10 minutes.

Prob (Alice wins next block) = fraction of global hash power she controls

Trivial to verify
Fully decentralized: no need CA to do this job!
Nonce published as part of block so other miners verify that

H(nonce ‖ prev_hash ‖ tx ‖ … ‖ tx) < target

Mining Mechanism: Proof-of-Work
Attacks infeasible if honest majority

>50% miners weighted by hash power follow the protocol

Solving hash puzzles is probabilistic

Bernoulli trials: Probability density function of the time to find the next block
by any node in the network is reduced exponentially

Time to next block (entire network)

Pr
ob

ab
ili

ty
 d

en
sit

y

10
minutes

Mining and Incentive Mechanism

Mining and incentive mechanisms significantly limits the impact of malicious
nodes in Bitcoin network
In summary, what can a “51 percent” attacker do?

Steal coins from existing address?

Suppress some transactions?
From the block chain
From the P2P network

Change the block reward?

Destroy confidence in Bitcoin?

✗

✓
✗

✗

✓✓

Bitcoin Mining
Bitcoin needs miners to operate

What do miners do?
Store and broadcast blockchain
Listen and verify transactions
Form blocks and add to the chain
Vote on consensus

Super Pit gold mine in Western
Australia (Wikipedia)

Gold miners ascending the Chilkoot pass
Klondike gold rush of 1898

https://en.wikipedia.org/wiki/Super_Pit_gold_mine
https://en.wikipedia.org/wiki/Western_Australia
https://en.wikipedia.org/wiki/Western_Australia

Bitcoin Mining
Steps to become a miner:

Join the network, listen for new transactions
Validate all proposed transactions

Listen for new blocks, maintain chain of blocks
When a new block is proposed, validate it

Assemble a new valid block

Find the nonce to make the block valid
Called “mining”

Hope everybody accepts the block

Make profit!

Useful to
Bitcoin
network

Bitcoin Mining
Can two miners solve the same puzzle?

H() H()

H() H() H() H()

25.0→A
coinbase:

0x0000...00

transaction transaction transaction

mrkl_root: H()
prev: H()

mrkl_root: H()

hash: 0x0000
nonce: 0x7a83

prev: H()

hash: hash: 0x3485...hash: 0x6a1f...
nonce: 0x0000...nonce: 0x0001...
hash: 0xc9c8...
nonce: 0x0002...
hash: 0x300c...
nonce: 0xffff...
hash:
nonce: 0x0000...

25.0→A
coinbase:

0x0000...01

All changed

hash: 0xd0c7...
nonce: 0x0001...
hash: 0x0224...

25.0→A
coinbase:

0x3df5...65

hash: 0x0000...
nonce: 0xf77e...

Mining Difficulty Target

00000000000000003AAEA200

256 bit hash output

64+ leading zeroes required

Current difficulty = 266.2

=84,758,978,290,086,040,000

Mining Difficulty
(Recap) PoW allows mining difficulty to be adjusted dynamically based on how
long 2016 blocks are found
Every two weeks, compute

next_difficulty = previous_difficulty *
(2 weeks)/(time to mine last 2016 blocks)

Expected number of blocks in 2 weeks at 10 minutes/block

Mining Difficulty Over Time

SHA-256 Hash
General purpose crypto hash function

Part of SHA-2 family: SHA-224,SHA-384,SHA-512
Remains unbroken cryptographically

Weaknesses found though!
SHA-3 (replacement) under standardization

256-bit state

x80
iterations

round
constants

Mining Economics

Complications
Fixed vs. variable costs
Reward depends on global hash rate

If mining reward
(block reward + Tx fees) > hardware +

electricity cost
→ Profit

Mining Hardware
CPU

High-end PC throughput ≈ 224

139,461 years

while (1){
HDR[kNoncePos]++;
IF (SHA256(SHA256(HDR)) < (65535 << 208)/ DIFFICULTY)

return;
} two hashes

GPU
Parallel ALUs, overclockable
Poor cooling, high power consumption
High-end throughput ≈ 227

173 years w/100 cards
ATI better than NVIDIA at mining. Why? Source: LeonardH,

cryptocurrenciestalk.com

Mining Hardware
FPGA (Field Programmable Gate Area)

High customization, optimization
Better cooling
Expensive, high power consumption
High-end throughput ≈ 230

25 years w/ 100 boards

Bitcoin ASICs
Special purpose
Longevity
TerraMiner IV ($6,000)

14 months to find a block

Mining Future

Only ASIC and professional mining profitable to Bitcoin
Expensive
Somewhat violate original vision of Bitcoin?

Can smaller miners stay in the game?

Would we be better off without ASICs?

Bitcoin Limitations

Many hardcoded constraints with tight economic implication
Block size
signatures per block
Currency divisibility
coins
Block rewards
Fixed algorithms
…

Scalability

Protocol Upgrade

Bitcoin Limitations

Very low throughput: 7 transactions per sec
10 mins (on average) to create a block
Block size: 1 MB, TX size: 250 bytes => 4000 TXs per block

VISA: 2K – 10K TX/ sec, Paypal 50 - 100 TX /sec

20,000 signature operations per block

21M total bitcoins maximum
50, 25, 12.5 …bitcoin mining reward
100M satoshis per coin

Impact economic balance of power
Too much to change now

Bitcoin Limitations

Cryptographic limits
Hard-coded crypto primitives (ECDSA/P256, SHA1)
Crypto primitives may be broken by 2040

Hard to upgrade (outdated) protocols
Impossible to ensure all nodes upgrade

Hard fork

Soft fork

“Hard-forking” Changes to Bitcoin
Validate blocks that were previously considered invalidate
Two branches never join again

Permanent split may occur
Old nodes will have to upgrade to stay on the same chain eventually

1

6

4

7

3

5

2

8

I found a nifty
new block!

Block 24

Block 24

Block 24

Block 24

Block 24

Block 23

Block 23

Block 23

Block 23

Block 23

Block 23

Block 23

Block 23

24
24

24

24

That’s crazy
talk!!

That’s
crazy talk!!

PROBLEM: Old nodes will never catch up

“Soft-forking” Changes to Bitcoin
Enforce stricter validation rules

New rules reject blocks that were previously accepted by old rule
Require majority of nodes to enforce new rules
Old nodes will approve

RISK: Old nodes might mine now-invalid blocks

OP_HASH160
<hash of redemption script>
OP_EQUAL

<signature>
<<pubkey> OP_CHECKSIG>

Old nodes will just approve the hash, not run the embedded script

Using Bitcoin
Bitcoin is available on many platforms now
Explore more yourself! J

